

c3controls' line of IEC Contactors are easy to install and designed to perform in a broad range of global applications. Our Series 300 Non-Reversing and Series 310 Reversing Contactors feature DIN rail and panel mounting, IP20 guarded terminals, multi-point coils, and include a wide variety of shared accessories.

IEC CONTACTORS

Series 300 Non-Reversing 30

Series 310 Reversing

Accessories 34

Replacement Components

Specifications 37

Circuit Diagrams

Electrical Life 42

Dimensions 43

NOTE: The scope (range, description, price, specifications, dimensions, etc.) of the product featured in this section is subject to change without notice. Refer to www.c3controls.com for product updates.

Conformity to Standards:

UL 508

CSA C22.2 No. 14 IEC 60947-1, 60947-4-1

Certifications:

UL File #: E236197 (Guide NLDX, NLDX7), E68568 (Guide NKCR, NKCR7)

CE Marked (per EU Low Voltage Directive 2006/95/EC and 93/68/EEC)

IT'S EASY TO BUILD YOUR OWN CONTACTOR

Simply pick the code number from each of the sections below and combine them to build your part number. See page 6 for more detailed directions.

IEC Non-Reversing Contactors

Example: To build one of our most popular Contactors, the part number would be I + II + III or 300-S09N30D10

I. NON-REVERSING CONTACTORS (3 NORMALLY OPEN POLES)													
				RATINGS FOR SWITCHING AC MOTORS - AC-2, AC-3, AC-4									
				kW	(50Hz)				HP	(60Hz)			
	MAX.	le (A)		3 PH	IASE		1 PI	HASE		3 PI	HASE		
CODE	AC-3	AC-1	230V	400/415V	500V	690V	115V	230V	200V	230V	460V	575V	PRICE
300-S09N30	9	25	2.2	4	5.5	5.5	1/2	1-1/2	3	3	5	7-1/2	\$ 12.00
300-S12N30	12	25	3	5.5	7.5	7.5	3/4	2	3	3	7-1/2	10	\$ 18.00
300-S18N30	18	32	4	7.5	10	10	1	3	5	5	10	15	\$ 23.00
300-S25N30	25	45	7.5	11	15	15	2	5	7-1/2	7-1/2	15	15	\$ 29.00
300-S32N30	32	60	9	15	18.5	18.5	3	5	10	10	20	25	\$ 35.00
300-S40N30	40	60	11	18.5	25	30	3	5	10	15	30	25	\$ 48.00
300-S50N30	50	90	15	22	30	35	3	7-1/2	15	15	40	40	\$ 59.00
300-S65N30	65	110	18.5	30	40	45	5	10	20	20	50	50	\$ 67.00
300-S80N30	80	110	22	37	45	45	7-1/2	15	20	25	50	60	\$ 77.00
300-S95N30	95	140	25	45	55	55	7-1/2	15	25	30	60	75	\$133.00
300-S105N30	105	140	30	55	65	65	10	20	30	40	75	75	\$153.00

	II. COIL VOLTAGE CODE																	
	AC COIL VOLTAGE CODES																	
VOLTAGE	OLTAGE 12 24 48 110 120 208 220 230 240 277 380 400 400~415 440 480 500 550 600																	
50Hz	G	Н	K	D	_	_	М	_	_	_	Q	AM	R	S	_	T	U	
60Hz	В	С	J	_	D	L	_	_	F	Р	_	_	_	_	R	_	_	T
50/60Hz	50/60Hz XB XC XJ XD XAD — XAJ XN XF — — XAM — XQ — — — —																	
	DC COIL VOLTAGE CODES																	

											PRICE
VOLTAGE	12	24	24 ~ 28	48	42 ~ 50	110	125	110 ~ 130	208 ~ 240	250	
-S09 to -S25	ZB	ZC	_	ZK	_	ZD	ZQ	_	_	ZP	\$ 8.00
-S32 to -S40	_	_	EC	_	EK	_	_	EL	EE	_	\$ 28.00
-S50 to -S105	_		EC		EK	_	_	EL	EE	_	\$131.00

	III. AUXILIARY CONTACT CONFIGURATION								
CODE	DESCRIPTION	PR	ICE						
00	Without Auxiliary Contacts (Contactors 300-S25 to 300-S105 only)	\$-							
10	1 Normally Open*	\$	4.00						
01	1 Normally Closed*	\$	4.00						
*NOTE: In	*NOTE: Integral right side mounted on 9A ~ 18A contactors, front mounted on 25A ~ 105A contactors.								

Some of Our Popular Configurations:

IEC NON-REVERSING CONTACTORS							
CATALOG NUMBER	DESCRIPTION	PRICE					
300-S09N30D10	Non-Reversing, 9A, 3 Pole, 120V AC Coil, 1 NO Auxiliary Contact	\$ 16.00					
300-S09N30ZC10	Non-Reversing, 9A, 3 Pole, 24V DC Coil, 1 NO Auxiliary Contact	\$ 24.00					
300-S25N30D10	Non-Reversing, 25A, 3 Pole, 120V AC Coil, 1 NO Auxiliary Contact	\$ 33.00					

IEC Non-Reversing Contactors

c3controls Series 300 Contactors are ideal for motor, actuator, solenoid, and other power switching applications where panel space is a premium and device modularity is required to satisfy virtually any application requirement. cULus and CE Markings make them suitable for use anywhere in the world. Small size, IP20 guarded terminals with dual terminal markings, and shared accessories will help reduce your total installed costs and enhance the features and performance of your equipment. Just look and see what the Series 300 has to offer.

Product features include:

 Compact size – five (5) frame sizes for devices rated from 9A to 105A. Contactors rated 15HP @ 460V (11kW @ 400V) are only 45mm (1-49/64") wide reducing panel area requirements – smaller enclosures can be used for lower installed costs.

- AC and DC operating coils for control circuit application flexibility.
 32A to 105A DC operated devices feature electronic coil control.
- · Environmentally friendly contacts are cadmium free and non-metallic materials are asbestos, halogen, and cadmium free.
- IP20 guarded terminals prevent accidental contact with live parts.
- Dual IEC and NEMA terminal markings for ease of wiring anywhere in the world.
- Device identification marker for labeling contactors and front mounted auxiliary contacts simplifies trouble shooting in panels with many contactors.
- 35mm DIN rail mounting for all contactors from 9A to 105A for fast and easy installation and removal or panel mounting
 for more secure installation in high shock and vibration applications. Our 9A to 25A devices are easily installed or removed
 without the use of tools.
- Modular design allows Series 320 Overload Relays to be easily installed or can be used with the complete range of Series 330 Motor Protection Circuit Breakers and accessories.
- Combination head terminal screws allow the use of straight, phillips, or posidrive screwdrivers. Allen head screws on 50A through 105A contactors make it easy to apply the proper terminal tightening torque for secure conductor connections.
- Snap-on front mounted auxiliary contacts install without the use of tools for lower installed costs. Single circuits available
 so you only purchase what you need.

UNIQUE PRODUCT FEATURES

IT'S EASY TO BUILD YOUR OWN CONTACTOR

Simply pick the code number from each of the sections below and combine them to build your part number. See page 6 for more detailed directions.

IEC Reversing Contactors

Example: To build one of our most popular Contactors, the part number would be I + II + III + IV or 310-S18N30D22

	I. REVERSING CONTACTORS (3 NORMALLY OPEN POLES)												
				RATINGS FOR SWITCHING AC MOTORS - AC-2, AC-3, AC-4									
				kW (S	iOHz)				HP (6	GOHz)			
	MAX.	le (A)		3 PH	ASE		1 Pi	IASE		3 PI	IASE		
CODE	AC-3	AC-1	230V	400/415V	500V	690V	115V	230V	200V	230V	460V	575V	PRICE
310-S09N30	9	25	2.2	4	5.5	5.5	1/2	1-1/2	3	3	5	7-1/2	\$ 57.00
310-S12N30	12	25	3	5.5	7.5	7.5	3/4	2	3	3	7-1/2	10	\$ 69.00
310-S18N30	18	32	4	7.5	10	10	1	3	5	5	10	15	\$ 79.00
310-S25N30	25	45	7.5	11	15	15	2	5	7-1/2	7-1/2	15	15	\$103.00
310-S32N30	32	60	9	15	18.5	18.5	3	5	10	10	20	25	\$119.00
310-S40N30	40	60	11	18.5	25	30	3	5	10	15	30	25	\$145.00
310-S50N30	50	90	15	22	30	35	3	7-1/2	15	15	40	40	\$183.00
310-S65N30	65	110	18.5	30	40	45	5	10	20	20	50	50	\$199.00
310-S80N30	80	110	22	37	45	45	7-1/2	15	20	25	50	60	\$219.00
310-500130									Ψ213.00				

	II. COIL VOLTAGE CODE																	
								AC COIL	. VOLTA	GE CODES	5							
VOLTAGE	12	24	48	110	120	208	220	230	240	277	380	400	400 ~ 415	440	480	500	550	600
50Hz	G	Н	K	D	—	_	M	_	_	_	Q	AM	R	S	_	T	U	_
60Hz	В	С	J	_	D	L		_	F	Р	_		_	_	R		_	Т
50/60Hz	XB	XC	XJ	XD	XAD	_	XAJ	XN	XF	_	_	XAM	_	ΧQ	_		_	_
								DC COII	VOLTA	GE CODE	S							
-																		PRICE
VOLTAGE		12	24	24	~ 28	48	}	42 ~ 5	0	110	125	1	10 ~ 130	208	~ 240	25	0	
-S09 to -S2	25	ZB	ZC	-	_	ZK		_		ZD	ZQ		_		_	ZI	P	\$ 16.00
-S32 to -S4	10	_	_	E	С	_		EK		_	_		EL		EE	_	-	\$ 56.00
-S50 to -S8	30	_	_	E	С	_		EK		_	_		EL		EE	_	-	\$262.00

	III. AUXILIARY CONTACT CONFIGURATIO	N					
CODE	DESCRIPTION	PRICE					
00	Without Auxiliary Contacts (Contactors 310-S25 to 310-S80 only)	\$—					
22 2 Normally Open (1 NO on Forward Contactor① \$ 16.00 and 1 NO on Reverse Contactor①) and 2 Normally Closed (1 NC on Forward Contactor② and 1NC on Reverse Contactor②)							
25A ~	Integral right side mounted on 9A ~ 18A contactors, front mounted on 25A ~ 80A contactors. Integrated contacts as part of the electrical/mechanical interlock.						

IV. OPTIONS								
CODE	DESCRIPTION	FOR CONTACTOR	PRICE (deduct)					
(Blank)	With Power Wires	_	<u> </u>					
WW	Without Interconnecting Power Wires	-S09 to -S18 -S25 -S32 to -S40 -S50 to -S80	-\$ 12.00 -\$ 14.00 -\$ 18.00 -\$ 34.00					

IEC REVERSING CONTACTORS

c3controls Series 310 Reversing Contactors are ideal for reversing motors in applications where panel space is a premium and device modularity is required to satisfy virtually any application requirement. cULus and CE Markings make them suitable for use anywhere in the world. A common mechanical interlock, power wiring modules, and IP20 guarded terminals with dual terminal markings, and shared accessories will help reduce your total installed costs and enhance the features and performance of your equipment. Just look and see what the Series 310 has to offer.

Product features include:

- Modular design for use with separately mounted overload relays or Series 320 Overload
 Relays can be directly mounted on Series 310 Reversing Contactors without load-side
 interconnecting power wires. Can also be used with separately mounted Series 330 Motor Protection
 Circuit Breakers or installed with a motor protection circuit breaker on a starter assembly mounting plate.
- AC and DC operating coils for control circuit application flexibility. 32A to 80A DC operated devices feature electronic coil control.
- · Environmentally friendly contacts are cadmium free and non-metallic materials are asbestos, halogen and cadmium free.
- IP20 guarded terminals prevent accidental contact with live parts.
- Dual IEC and NEMA terminal markings for ease of wiring anywhere in the world.
- Device identification marker for labeling contactors and front mounted auxiliary contacts simplifies trouble shooting in panels with many contactors.
- 35mm DIN rail mounting for all contactors from 9A to 80A for fast and easy installation and removal or panel mounting
 for more secure installation in high shock and vibration applications. Our 9A to 25A devices are easily installed or removed
 without the use of tools.
- Power wiring modules provide reliable, rigid interconnections between the forward and reverse contactors.
- Combination head terminal screws allow the use of straight, phillips, or posidrive screwdrivers. Allen head screws on 50A through 80A contactors make it easy to apply the proper terminal tightening torque for secure conductor connections.
- Snap-on front mounted auxiliary contacts install without the use of tools for lower installed costs. Single circuits available
 so you only purchase what you need.

UNIQUE PRODUCT FEATURES

Series 310 Reversing Contactors feature a single side mounted electrical and mechanical or mechanical only interlock that is used for the whole range of contactors, enabling a 9A contactor to be interlocked with a 105A contactor. The side mounted interlock doesn't increase the depth of the contactor and doesn't prevent front mounted auxiliary contacts from being added to either the

forward or reverse contactors. Contactors are physically secured together with a dovetail bracket that installs from the bottom of the contactor – so it can't fall out when it is installed on a DIN rail or on a panel, even in high vibration applications. To complete the reversing contactor assembly, attractive, insulated wiring modules provide error free interconnections between the forward and reverse contactors. Simple to use, modular accessories make reversing contactors easy to assemble in the field – or order them factory assembled. Either way you'll get the performance and features you

Some of Our Popular Configurations:

	IEC REVERSING CONTACTORS	
CATALOG NUMBER	DESCRIPTION	PRICE
310-S09N30D22	Reversing, 9A, 3 Pole, 120V AC Coil, 2 NO and 2 NC Auxiliary Contacts	\$ 73.00
310-S09N30ZC22	Reversing, 9A, 3 Pole, 24V DC Coil, 2 NO and 2 NC Auxiliary Contacts	\$ 89.00
310-S25N30D22	Reversing, 25A, 3 Pole, 120V AC Coil, 2 NO and 2 NC Auxiliary Contacts	\$119.00
310-S25N30ZC22	Reversing, 25A, 3 Pole, 24V DC Coil, 2 NO and 2 NC Auxiliary Contacts	\$135.00
310-S32N30D22	Reversing, 32A, 3 Pole, 120V AC Coil, 2 NO and 2 NC Auxiliary Contacts	\$135.00
310-S32N30EC22	Reversing, 32A, 3 Pole, 24 ~ 28V DC Coil, 2 NO and 2 NC Auxiliary Contacts	\$191.00

need for your reversing motor applications.

Our front mounted auxiliary contacts feature IP20 guarded terminals to protect against accidental contact with live parts. The device identification marker simplifies trouble shooting in panels with many contactors. These contacts snap-on and install without the use of tools. NOTE: See chart below for maximum number of front mounted auxiliary contacts.

CODE	CONTACT CONFIGURATION	CONNECTION DIAGRAM	PRICE
300-SFA10	1 Normally Open	-3 NO	\$ 4.00
300-SFA01	1 Normally Closed	-1 NC	\$ 4.00
300-SFA10EM	1 Normally Open Early Make	-7 _{NO}	\$ 6.00
300-SFA01DB	1 Normally Closed Delayed Break	-5 NC	\$ 6.00

MAXIMUM NUMBER OF FRONT OR SIDE MOUNTED AUXILIARY CONTACTS

CONTACTOR	MAXIMUM NUMBER
S09, S12, S18, S25	4
S32, S40	6
S50, S65, S80, S95, S105	8

WIRING MODULES

make field assembly of reversing contactors easy. Line and load side over-molded copper bus bar conductors ensure error free installation and make for a rigid assembly with a mechanical interlock (300-SMI) or electrial/ mechanical interlock (300-SMEI).

CODE	FOR USE WITH CONTACTORS	PRICE
300-RWS18	S09, S12, S18	\$12.00
300-RWS25	S25	\$14.00
300-RWS40	S32, S40	\$18.00
300-RWS80	S50, S65, S80	\$34.00

Side mounted auxiliary contacts feature IP20 guarded terminals to protect against accidental contact with live parts. NOTE: See chart at left for maximum number of side mounted auxiliary contacts.

CODE	CONTACT CONFIGURATION	CONNECTION DIAGRAM	PRICE
300-SSA11	1 Normally Open and 1 Normally Closed	NO NC 13,pt 21,75 L\	\$11.00
300-SSA20	2 Normally Open	NO NO 13 pt 23 pt L	\$11.00
300-SSA11X	1 Normally Open and 1 Normally Closed*	NO NC 53,48 61,72 L 54 68 62 12	\$11.00
300-SSA20X	2 Normally Open*	NO NO 53 78 63 72 L	\$11.00
*NOTE: For use with	300-SSA11 or 300-SSA20 who	en more than one side n	nounted

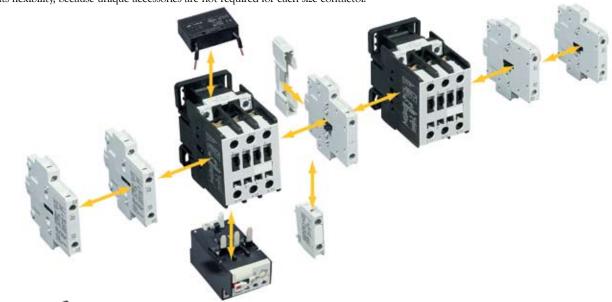
auxiliary contact module is installed on the same side of the contactor.

MECHANICAL INTERLOCK

Our side mounted mechanical interlock for use with reversing contactors, reversing starters, two-speed starters and star-delta (wye-delta) starters. This single interlock can be used with all size contactors from $9A \sim 105A$, preventing the forward and reverse contactors from being energized at the same time.

ELECTRICAL & MECHANICAL INTERLOCK

c3controls now offers an electrical/mechanical interlock for reversing contactors. This interlock has the same features as the mechanical interlock but also has two normally closed auxiliaries built into the unit for electrical interlocking, eliminating the need for two normally closed auxiliary contacts and the mechanical interlock. The result of integrating the normally closed auxiliary contact is decreased width of reversing contactors and more available auxiliary contact locations.


CODE	DESCRIPTION	PRICE
300-SMI	Side Mounted Mechanical Interlock	\$12.00
300-SMEI	Side Mounted Electrical/Mechanical Interlock	\$15.00
I		

Accessories for IEC Non-Reversing and Reversing Contactors

The complete range of Series 300 Non-Reversing Contactors and 310 Reversing Contactors share common accessories including single circuit front mounted auxiliary contacts, two circuit side mounted auxiliary contacts, a single electrical/mechanical or mechanical interlock, and coil mounted surge suppressors. Designing starter assemblies and panels is easy – you don't have to remember which auxiliary is required for each contactor, they all work together. Installation is easy too – once you learn how to install each accessory, it's always the same no matter what contactor it's being installed on. If simple design and assembly isn't enough – you'll also reduce your inventory and maximize its flexibility, because unique accessories are not required for each size contactor.

SURGE SUPPRESSORS

Coil mounted surge suppressors protect sensitive electronic components in control circuits from damaging line voltage spikes.

CODE	VOLTAGE RANGE		FOR USE WITH CONTACTOR	PRICE
300-SRCS2J	24 ~ 48V AC		S09, S12, S18, S25, S32, S40	\$10.00
300-SRCS2AH	50 ~ 127V AC	A1	S09, S12, S18, S25, S32, S40	\$10.00
300-SRCS2M	130 ~ 250V AC		S09, S12, S18, S25, S32, S40	\$10.00
300-SRCS5J	24 ~ 48V AC	A2	S50, S65, S80, S95, S105	\$10.00
300-SRCS5AH	50 ~ 127V AC	AZI	S50, S65, S80, S95, S105	\$10.00
300-SRCS5M	130 ~ 250V AC		S50, S65, S80, S95, S105	\$10.00
		DIODE SURGE SUPPRESSOR		
CODE	VOLTAGE RANGE		FOR USE WITH CONTACTOR	PRICE
300-SDS5T	12 ~ 600V DC	A1 A2 A2	S09, S12, S18, S25, S32, S40, S50, S65, S80, S95, S105	\$10.00

IT'S EASY TO BUILD YOUR OWN OPERATING COIL

Simply pick the code number from each of the sections below and combine them to build your part number. See page 6 for more detailed directions.

Operating Coils

Example: To build one of our most popular Operating Coils, the part number would be I+II or ACS25D

	I. OPERA	ATING COIL TYPE	
CODE	DESCRIPTION	FOR USE WITH CONTACTORS	PRICE
ACS25	AC Operating Coil	S09, S12, S18, S25	\$ 6.00
ACS40	AC Operating Coil	S32, S40	\$ 8.00
ACS105	AC Operating Coil	S50, S65, S80, S95, S105	\$ 12.00
DCS25	DC Operating Coil	S09, S12, S18, S25	\$ 12.00
DCS40	DC Operating Coil	S32, S40	\$ 38.00
DCS105	DC Operating Coil	S50, S65, S80, S95, S105	\$ 60.00

	II. COIL VOLTAGE CODE																	
	AC COIL VOLTAGE CODES																	
VOLTAGE	12	24	48	110	120	208	220	230	240	277	380	400	400 ~ 415	440	480	500	550	600
50Hz	G	Н	K	D	_	_	M	_	_	_	Q	AM	R	S		T	O	_
60Hz	В	С	J	_	D	L	_	_	F	Р	_	_	_		R	_		T
50/60Hz	XB	XC	XJ	XD	XAD	_	XAJ	XN	XF	_	_	XAM	_	ΧŒ		_	_	_
								DC COIL	VOLTAG	E CODE	S	-						
VOLTAGE		12	24		24 ~ 28	}	48	42	~ 50	1	10	125	110 ~	130	208	~ 240		250
-S09 to -S2	25	ZB	ZC		_		ZK		_		ZD	ZQ	_	-		_		ZP
-S32 to -S4	40	_	_		EC		_		EK		_	_	E	L		EE		_
-S50 to -S	105	_	_		EC		_		EK		-	_	E	L		EE		_

CONTACT KITS

One contact kit includes six stationary contacts, three moving contacts and miscellaneous parts.

CODE	FOR USE WITH CONTACTORS	PRICE
300-SCK09	S09	\$ 7.00
300-SCK12	S12	\$ 10.00
300-SCK18	S18	\$ 12.00
300-SCK25	S25	\$ 18.00
300-SCK32	S32	\$ 20.00
300-SCK40	S40	\$ 33.00
300-SCK50	S50	\$ 42.00
300-SCK65	S65	\$ 50.00
300-SCK80	S80	\$ 60.00
300-SCK95	S95	\$ 88.00
300-SCK105	S105	\$108.00

SPECIFICATIONS:

			LECTRI	CAL SP	ECIFIC	ATIONS						
		S09	S12	S18	S25	S32	S40	S50	S65	S80	S95	S105
ELECTRICAL GENERAL			0.12	0.0	020							
	UNITS											
Rated Operating Frequency	Hz						25 ~ 400					
Impedance per Pole	mΩ	2.35	2.35	2.41	1.65	1.28	0.95	0.85	0.86	0.86	0.76	0.76
POWER DISSIPATION PER POLE		2.00	2.00		1.00		0.00	0.00	0.00	0.00	0.70	0.70
AC-1	W	1.47	1.47	2.46	3.34	4.6	3.42	6.89	10.4	10.4	14.89	14.89
AC-3	W	0.19	0.34	0.78	1.03	1.31	1.52	2.12	3.63	5.5	6.86	8.37
Rated Coil Frequencies		0.10	0.01			60Hz, 50/6					0.00	0.07
ELECTRICAL UL/CSA APPLICATIONS					10. 00112,	00112, 00, 0	JOINE DO	una 20,71	0. 00,0011	-		
Rated Operating Voltage, Ue	VAC						600					
General Purpose Current Rating	A	25	25	32	32	60	60	90	110	110	140	140
RATED 1 PHASE OPERATING CURRENT, le	- 1			<u> </u>						1.10		
115V	Α	9.8	13.8	16	24	34	34	34	56	80	80	100
230V	A	10	12	17	28	28	28	40	40	50	68	88
RATED 1 PHASE OPERATING POWER, Pe		10	1 12	.,,				10	10	_ 50	00	- 00
115V	HP	1/2	3/4	1	2	3	3	3	5	7-1/2	7-1/2	10
230V	HP	1-1/2	2	3	5	5	5	7-1/2	10	15	15	20
RATED THREE PHASE OPERATING CURRENT, le		/2						,2				
200V	Α	11.0	11.0	17.5	25.3	32.2	32.2	48.3	62.1	62.1	78.2	92
230V	A	9.6	9.6	15.2	22	28	42	42	54	68	80	104
460V	A	7.6	11	14	21	27	40	52	65	65	77	96
575V	A	9	11	17	17	27	27	41	52	62	77	77
RATED THREE PHASE OPERATING POWER, Pe				.,	17			71	J 22	02	,,	
200V	HP	3	3	5	7-1/2	10	10	15	20	20	25	30
230V	HP	3	3	5	7-1/2	10	15	15	20	25	30	40
460V	HP	5	7-1/2	10	15	20	30	40	50	50	60	75
575V	HP	7-1/2	10	15	15	25	25	40	50	60	75	75
Size	H	00	10	0	15	1	23	2	30	00	3	73
Short Circuit Rating	kA	5	5	5	5	5	5	10	10	10	10	10
Maximum Fuse Size	A	25	25	32	32	60	60	90	110	110	140	40
Electrical Endurance, AC-3 at	A	20	20	32	32	00	00	90	110	110	140	40
Maximum Rated 3 Phase	Ops.	1.8	2.0	1.6	1.6	1.5	1.5	1.6	1.8	1.5	1.5	1.0
Operating Power (@460V)	(mill.)	1.0	2.0	1.0	1.0	1.5	1.0	1.0	1.0	1.5	1.0	1.0
ELECTRICAL IEC APPLICATIONS	(111111.)		<u> </u>			<u> </u>						
Rated Insulation Voltage, Ui	V						1000					
	kV	6	6	6	6	6		8	0	0	8	0
Rated Impulse Voltage Withstand, Uimp Rated Operating Voltage, Ue	VAC	0	6	6	0	0	690	0	8	8	0	8
Rated Thermal Current,	VAC						050					
Ith for Ambient Temperature	A	25	25	32	45	60	60	90	110	110	140	140
< 55° C (131° F)	_ ^	23	23	J2	40	00	00	30	'''	110	140	140
RATED AC-1 OPERATING CURRENT, le												
At 55° C (131° F)	Α	25	25	32	45	60	60	90	110	110	140	140
At 70° C (158° F)	A	20	20	25	32	48	48	72	88	88	110	110
RATED AC-3 OPERATING CURRENT. le		20				1 70	1 70	12	1 00	1 00	110	110
220 ~ 240V	Α	9	12	18	25	32	40	50	65	80	95	105
380 ~ 400V	A	9	12	18	25	32	40	50	65	80	95	105
415 ~ 440V	A	9	12	18	25	32	40	50	65	80	95	105
500V	A	7.5	10.5	14	19	24	32	38	55	63	79	85
660 ~ 690V	A	7.3	9	13	15	22	25	34	44	48	60	80
RATED 3 PHASE AC-3 OPERATING POWER, Pe		,] 3	13	13		20	J 34	+4	1 40	UU	00
220 ~ 240V	kW	2.2	3	4	6.5	9	11	15	18.5	22	25	30
380 ~ 400V	kW	4	5.5	7.5	11	15	18.5	22	30	37	45	55
415 ~ 440V	kW	4	5.5		12.5	15	22	30	37		45 55	55
500V	kW	5.5	7.5	9 10	12.5	18.5		30	40	45 45	55	
-							25			45		65
660 ~ 690V	kW	5.5	7.5	10	15	18.5	30	33	45	45	55	65

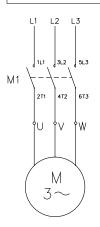
	ELECTRI											
		S09	S12	S18	S25	S32	S40	S50	S65	S80	S95	S105
LECTRICAL IEC APPLICATIONS (CONT												
	UNITS											
RATED SHORT-TIME CURRENT, Icw												
1 Second	Α	455	455	570	630	1010	1265	1580	2530	2530	3300	3300
5 Seconds	Α	205	205	254	280	450	450	710	1130	1130	1485	1485
10 Seconds	Α	144	144	180	200	320	400	500	800	800	1050	1050
30 Seconds	Α	85	85	104	115	185	230	290	460	460	600	600
1 Minute	Α	60	60	74	80	130	165	205	325	325	430	430
3 Minutes	Α	35	35	46	50	90	100	120	185	185	250	250
MAXIMUM ELECTRICAL SWITCHING RATE												
AC-1	Ops./hr.	1200	1200	1200	1200	1200	1200	1200	1200	1200	600	600
AC-3	Ops./hr.	1200	1200	1200	1200	1200	1200	1200	1200	1200	600	600
AC-4	Ops./hr.	360	360	360	360	360	200	200	200	200	200	200
Electrical Endurance, AC-3												
at Maximum Rated 3 Phase	Ops.	1.6	1.8	1.3	1.4	1.3	1.3	1.2	1.4	1.2	1.2	1.0
Operating Power (@400V)	(mill.)											
Making Capacity	Α	450	450	450	450	550	1000	1000	1000	1000	1280	1280
BREAKING CAPACITY			1	1	T	ı	1	1		1	1	
Ue ≤ 400V	Α	250	250	250	450	450	920	920	920	920	1050	1050
Ue = 500V	Α	250	250	250	450	450	920	920	920	920	1050	1050
Ue = 690V	Α	130	130	130	170	205	780	780	780	780	950	950
COIL CHARACTERISTICS												
Rated Insulation Voltage, Ui	V						1000					
DPERATING LIMITS												
50HZ, 60HZ, 50/60HZ												
Operating	хUс						0.80 ~ 1.10	0				
Pick-Up	хUс	0.60 ~	0.60 ~	0.60 ~	0.60 ~	0.65 ~	0.65 ~	0.65 ~	0.65 ~	0.65 ~	0.65 ~	0.65 ~
		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Sealed	хUс	0.35 ~	0.35 ~	0.35 ~	0.35 ~	0.40 ~	0.40 ~	0.40 ~	0.40 ~	0.40 ~	0.40 ~	0.40 ~
		0.55	0.55	0.55	0.55	0.60	0.60	0.60	0.60	0.60	0.60	0.60
DC												
Operating	хUс						0.80 ~ 1.10					
Pick-Up	хUс	0.45 ~	0.45 ~	0.45 ~	0.45 ~	0.45 ~	0.45 ~	0.70 ~	0.70 ~	0.70 ~	0.70 ~	0.70 ~
		0.65	0.65	0.65	0.65	0.75	0.75	0.80	0.80	0.80	0.80	0.80
Sealed	хUс	0.15 ~	0.15 ~	0.15 ~	0.15 ~	0.15 ~	0.15 ~	0.40 ~	0.40 ~	0.40 ~	0.40 ~	0.40 ~
		0.30	0.30	0.30	0.30	0.45	0.45	0.60	0.60	0.60	0.60	0.60
COIL CONSUMPTION												
50HZ, 60HZ, 50/60HZ												
Pick-Up	VA	70	70	70	70	98	98	255	255	255	255	255
Hold-In	VA	7	7	7	7	9	9	16	16	16	16	16
DC												
Pick-Up	W	5.5	5.5	5.5	5.5	180	180	340	340	340	340	340
Hold-In	W	5.5	5.5	5.5	5.5	2.2	2.2	6.5	6.5	6.5	6.5	6.5
DPERATING TIMES		ļ										
AC												
Pick-Up	msec.	8~20	8~20	8~20	8~20	10~19	10~19	15~30	15~30	15~30	15~30	15~30
Drop-Out	msec.	6~13	6~13	6~13	6~13	5~25	5~25	9~15	9~15	9~15	9~15	9~15
DC		ļ										
Pick-Up	msec.	35 ~	35 ~	35 ~	35 ~	40 ~	40 ~	50 ~	50 ~	50 ~	50 ~	50 ~
		45	45	45	45	55	55	60	60	60	60	60
Drop-Out	msec.	7 ~	7 ~	7 ~	7 ~	30 ~	30 ~	55 ~	55 ~	55 ~	55 ~	55 ~
		12	12	12	12	65	65	60	60	60	60	60
POWER DISSIPATION												
50Hz, 60Hz, 50/60Hz	W	2.6	2.6	2.6	2.6	4.3	4.3	8.0	8.0	8.0	8.0	8.0
POWER FACTOR												
Closed	cosφ	0.33	0.33	0.33	0.33	0.28	0.28	0.26	0.26	0.26	0.26	0.26
Open	cosΨ	0.84	0.84	0.84	0.84	0.73	0.73	0.54	0.54	0.54	0.54	0.54

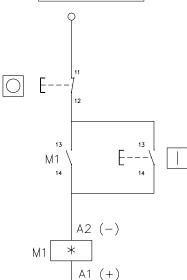


UNITS Ops. (mill.) Ops./ hr.	S09	S12	S18	S25	S32	S40	S50	S65	S80	S95	S10:
Ops. (mill.) Ops./											
(mill.) Ops./											
Ops./						10					
111.						9,00	0				
					-25 to	+55° C (-	13 to +131	l° F)			
						+80° C (-!					
						3,000m (9	,792 ft.)				
	3	3	3	3	3	3	3	3	3	3	3
	IP20	IP20	IP20	IP20*	IP20*		IP20*	IP20*	IP20*	IP20*	IP20
											IP2
len											1P2
_											3.2
IDS.	0.00							1			
		1 01 1	.5110 0011	ipiiuiiot U	- cumbiile	acion by p	. ouuot, 1t	5.01 to VVV	v vv.00001	013.00111.	
	S09	- S18		S25	S	32 - S40		S50 - S80	0	S95 -	S105
NALS											
UNITS											
mm²			1			_		_		_	-
	2 x 2	.5 ~ 6	2 x 2	2.5 ~ 10							
2	0 1	0.5	0 1	0.5							
mm²								_		_	-
	2 X Z	.5 ~ 0	2 X 4	2.0 ~ 10							
	2 x 20) ~ 12	2 x	20 ~ 8		_				_	-
mm²	_	_		_	0	.75 ~ 16		1 ~ 35		1.5 ~	50
mm²	_	_		_				1 ~ 35		1.5 ~	
mm²	-	_		_		1 ~ 16		1 ~ 35		1.5 ~	50
						18 ~ 6		16 ~ 2		16 ~	2
mm²	_			_	_			1 ~ 16		4 ~ :	
mm²	_	_				1 ~ 16		1 ~ 25		4 ~ 3	35
mm²	_			_		1 ~ 16		1 ~ 25		4 ~ 3	35
	-							16 ~ 4		10 ~	
mm²	-				_		M			Max. 50/I	
mm²	-	_		_		/Iax. 16			I	Max.	. 35
mm²						Nav 16				May	25
1111112	_	_		_	"	vidX. ID				IVI d X.	່ວວ
mm²	_	_		_			Max	50			
					'				I	Max.	
	_	_		_	N	Лах. 16	М			Max	
Lb-in.	8.8 ~	16.9	14.2	2 ~ 26.6	22	2.1 ~ 35.4		35.4 ~ 53.	.1	44.3 ~	57.5
Nm		~ 1.9		i ~ 3.0		2.5 ~ 4.0					
	mm²	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20 IP20 IP20 IP20 IP20* IP20* IP20* IP20 IP20	IP20

			INTERNAL AUXILIARY CO	NITACT	CONTACT BLOCKS
		coo		S18	
ELECTRICAL GENERAL		S09	\$12	518	300-SFA & 300-SSA
ELEGIKICAL GENEKAL	UNITS				
Minimum Switching Capacity	UNITS		FmΛ	@ 17V	
Electrical Endurance	Ops. (mill.)		JIIIA	1	
Mechanical Endurance	Ops. (mill.)			<u>1</u> 15	
Non-Overlap Time	msec.			1.5	
Insulation Resistance	mΩ			·10	
ELECTRICAL UL/CSA APPLICATIONS	11152			>10	
Rated Operating Voltage, Ue	V			600	
PILOT DUTY RATING	V			JUU	
AC			Λ	600	
DC		P600	P600	P600	Q600
ELECTRICAL IEC APPLICATIONS		F 000	F 000	1,000	1 000
Rated Insulation Voltage, Ui	V		1	000	
Rated Operating Voltage, Ue	V			690	
Rated Thermal Current, Ith for					
Ambient Temperature <55° C	Α	20	20	20	10
RATED AC-15 OPERATING CURRENT, le					
110 ~ 127V	Α	10	10	10	6
220 ~ 240V	A	10	10	10	6
380 ~ 400V	A	6	6	6	4
415 ~ 450V	A	5	5	5	3.5
500V	A	4	4	4	2.5
600 ~ 690V	A	2	2	2	1.5
RATED DC-13 OPERATING CURRENT, Ie	A	<u>L</u>		<u> </u>	1.3
24V	Α	6	6	6	6
48V	A	4	4	4	4
110V	A	2	2	2	2
220V	A	0.7	0.7	0.7	0.7
440V	A	0.7	0.7	0.7	0.7
MAKING CAPACITY, Im	A	0.7	U. <i>I</i>	U.1	U.1
AC-15/AC-11 Ue ≤ 400V					
50/60Hz	Α	250	250	250	90
DC-13/DC-11 Ue ≤ 220V	A	250	250	250	90
BREAKING CAPACITY, Im		230	200] 30
AC-15/AC-11 Ue ≤ 400V					
50/60Hz	A	250	250	250	60
DC-13/DC-11 Ue ≤ 220V	Α	2	2	2	0.95
Short Circuit Protection		_	-		
with Fuses (gG/gL)	A	10	10	10	10
RoHS Compliance		Ear Pall C	 compliance documentatio	n by product refer to we	ANA o 2 controls com

OPERATING Position





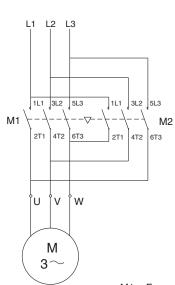
SERIES 300 NON-REVERSING CONTACTOR CIRCUIT DIAGRAMS

POWER CIRCUIT

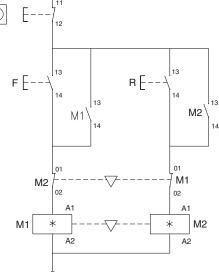
CONTROL CIRCUIT

M1 = Forward Contactor

F = Forward Push Button


M2 = Reverse Contactor R = Reverse Push Button

= Emergency Stop Push Button


* = Coil Voltage Code

SERIES 310 REVERSING CONTACTOR CIRCUIT DIAGRAMS

POWER CIRCUIT

CONTROL CIRCUIT

M1 = Forward Contactor

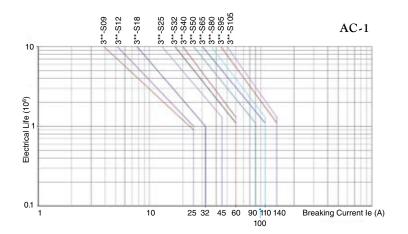
F = Forward Push Button

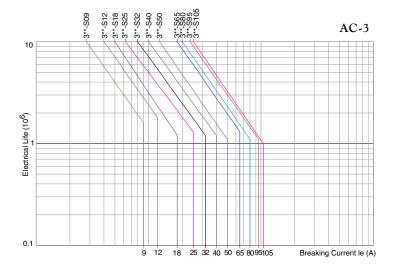
M2 = Reverse Contactor

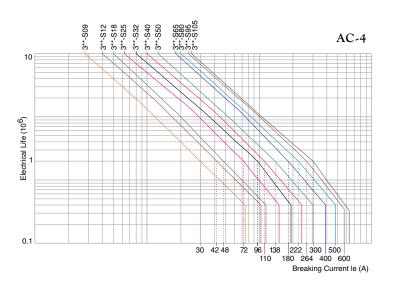
R = Reverse Push Button

= Emergency Stop Push Button

= Coil Voltage Code

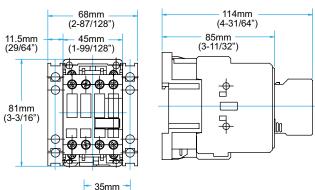


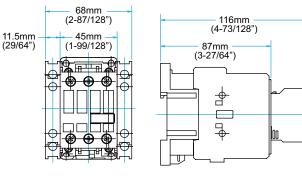

ELECTRICAL LIFE IN UTILIZATION CATEGORY

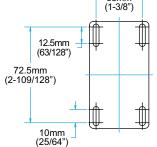

To find a contactor's estimated life:

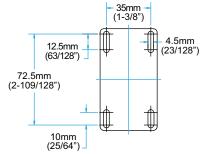
- 1. Identify the utilization category of the application.
- 2. Refer to the chart for the applicable utilization category.
- 3. Locate the intersection of the life-load curve for the contactor selected with the application breaking current (Ie) on the horizontal axis of the chart.
- 4. Read the estimated contactor life from the vertical axis of the chart.

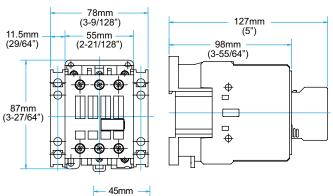
The life-load curves are based on tests in accordance with IEC 60947-4-1. Many conditions of an actual application effect contact life such as the environment and duty cycle, therefore, the actual contact life may vary from the life indicated by the curves shown here.

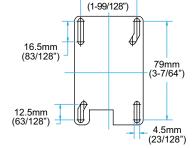


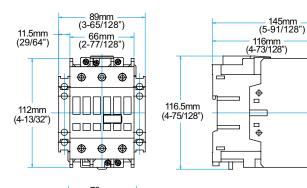


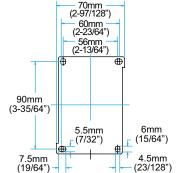

NON-REVERSING CONTACTO



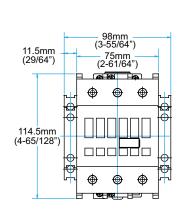


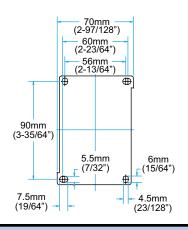

300-S25

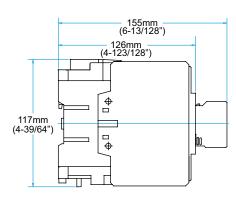



300-S32 & 300-S40

300-850, 300-865 & 300-880

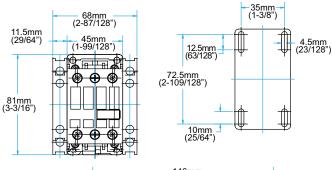


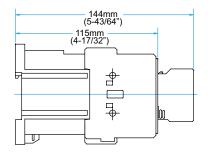


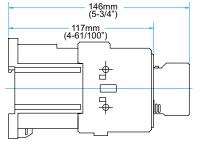


3 POLE NON-REVERSING CONTACTORS - AC COILS (CONT.)

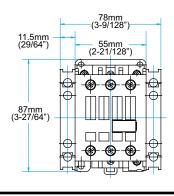
300-895 & 300-8105

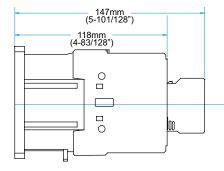


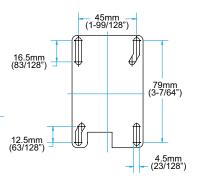

3 POLE NON-REVERSING CONTACTORS - DC COILS

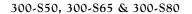

300-809, 300-812 & 300-818

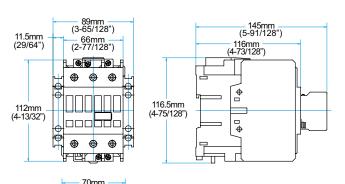
68mm (2-87/128") 11.5mm (29/64") (1-99/128") (63/128") (63/128") (63/128") (63/128") (72.5mm (2-109/128") (1-99/128")

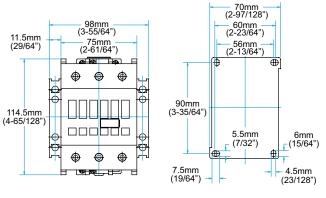

300-S25

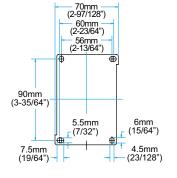


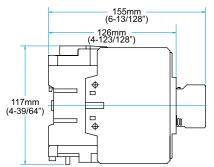



300-S32 & 300-S40

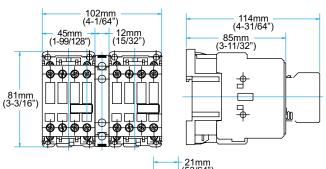


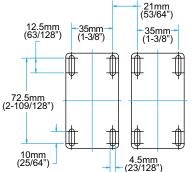


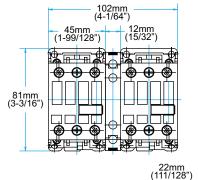

3 POLE NON-REVERSING CONTACTORS - DC COILS (CONT.)



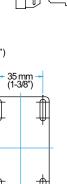
300-S95 & 300-S105






3 POLE CONTACTORS WITH ELECTRICAL/ MECHANICAL OR MECHANICAL INTERLOCK - AC COILS

300-S09, 300-S12 & 300-S18


300-S25

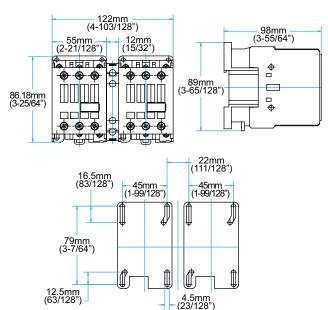
12.5mm (63/128")

72.5mm (2-109/128")

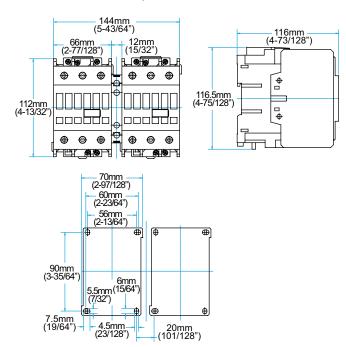
> 10mm (25/64")

87mm - (3-27/64")

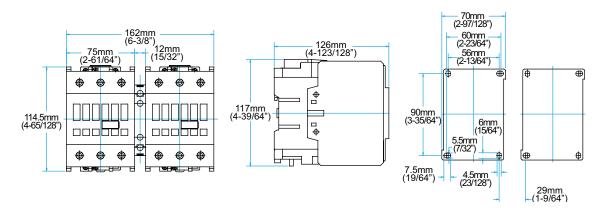
+


5

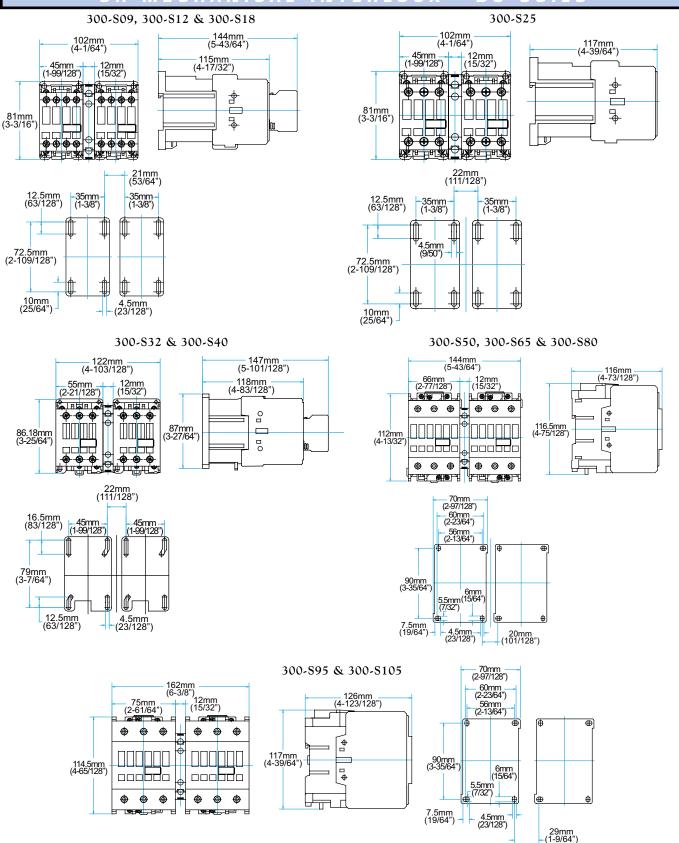
4.5mm (23/128")



POLE CONTACTORS WITH ELECTRICAL/MECHANICAL OR MECHANICAL INTERLOCK - AC COILS (CONT.)


300-S32 & 300-S40

300-850, 300-865 & 300-880


300-895 & 300-8105

VISIT WWW.C3CONTROLS.COM TO DOWNLOAD CAD DRAWINGS

3 POLE CONTACTORS WITH ELECTRICAL/MECHANICAL OR MECHANICAL INTERLOCK - DC COILS

ADVANTAGE PRICING LIFETIME WARRANTY GUARANTEED SAME-DAY SHIPPING

There's a better way!

Discover the c3controls difference that proves there is truly a better way to buy.

c3controls designs and manufactures a comprehensive portfolio of standard industrial control products that meet the most demanding applications.

Each of our products is backed with a lifetime warranty – representing a commitment to quality and performance that is unmatched in the industry.

c3controls' pricing advantage – combined with our guaranteed same-day shipping promise – improves your profitability and cash flow, reduces carrying costs and inventory expenses, accelerates manufacturing throughput and decreases production costs.

Machine builders, attracted by our unique approach and driven to gain efficiencies in a challenging economy, are turning to c3controls at an unprecedented rate.

Month-over-month sales records have been fueled by people who expect more and get it from c3controls.

Learn more about the c3controls difference at c3controls.com/takecontrol.

